ELECTROCHEMISTRY

ELECTRODE POTENTIAL

For any electrode \rightarrow oxidiation potential = – Reduction potential

 $E_{cell} = R.P$ of cathode – R.P of anode

 $E_{coll} = R.P.$ of cathode + O.P of anode

 E_{cell}^{\odot} is always a +ve quantity & Anode will be electrode of low R.P E_{Cell}° = SRP of cathode – SRP of anode.

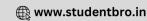
0 Greater the SRP value greater will be oxidising power.

GIBBS FREE ENERGY CHANGE:

$$\Delta G = - nFE_{cell}$$

 $\Delta G^{\circ} = - nFE^{\circ}_{cell}$

NERNST EQUATION: (Effect of concentration and temp on emf of cell)


$$\Delta G = \Delta G^{\circ} + RT \ln Q$$
 (where Q is raection quotient)

$$\Delta G^{\circ}$$
 = $- RT \ell n K_{eq}$

$$E_{cell} = E_{cell}^{o} - \frac{RT}{nF} \ell n Q$$

$$E_{cell} = E_{cell}^{\circ} - \frac{2.303 RT}{pF} log Q$$

$$E_{cell} = E_{cell}^{o} - \frac{0.0591}{n} \log Q$$
 [At 298 K]

At chemical equilibrium

$$\Delta G = 0$$
 ; $E_{cell} = 0$.

O
$$\log K_{eq} = \frac{nE_{cell}^{0}}{0.0591}$$
.

$$E_{cell}^{o} = \frac{0.0591}{n} \log K_{eq}$$

For an electrode M(s)/Mn+.

$$E_{M^{n+}/M} = E_{M^{n+}/M}^{\circ} - \frac{2.303RT}{nF} \log \frac{1}{[M^{n+}]}.$$

CONCENTRATION CELL:

A cell in which both the electrods are made up of same material.

For all concentration cell $E_{cell}^0 = 0$.

(a) Electrolyte Concentration Cell : eg. $Zn(s)/Zn^{2+}(c_1) || Zn^{2+}(c_2)/Zn(s)$

$$E = \frac{0.0591}{2} \log \frac{C_2}{C_1}$$

(b) Electrode Concentration Cell:

eg. Pt, $H_2(P_1 \text{ atm}) / H^+ (1M)$ / $H_2(P_2 \text{ atm}) / Pt$

$$E = \frac{0.0591}{2} \log \left(\frac{P_1}{P_2} \right)$$

DIFFERENT TYPES OF ELECTRODES:

1. Metal-Metal ion Electrode M(s)/Mⁿ⁺ . $M^{n+} + ne^- \longrightarrow M(s)$

$$E = E^{\circ} + \frac{0.0591}{n} \log[M^{n+}]$$

2. Gas-ion Electrode Pt /H₂(Patm) /H⁺ (XM) as a reduction electrode

$$H^+(aq) + e^- \longrightarrow \frac{1}{2}H_2(Patm)$$

$$E = E^{\circ} - 0.0591 \log \frac{P_{H_2}^{\frac{1}{2}}}{[H^+]}$$

3. Oxidation-reduction Electrode Pt / Fe²⁺, Fe³⁺ as a reduction electrode Fe³⁺ + e⁻ \longrightarrow Fe²⁺

$$E = E^{\circ} - 0.0591 \log \frac{[Fe^{2+}]}{[Fe^{3+}]}$$

4. Metal-Metal insoluble salt Electrode eg. Ag/AgCl, Clas a reduction electrode AgCl(s) + $e^- \longrightarrow Ag(s) + Cl^-$

$$E_{CI^{-}/AgCI/Ag} = E_{CI^{-}/AgCI/Ag}^{0} - 0.0591 \log [CI^{-}].$$

ELECTROLYSIS:

(a) K⁺, Ca⁺², Na⁺, Mg⁺², Al⁺³, Zn⁺², Fe⁺², H⁺, Cu⁺², Ag⁺, Au⁺³.

Increasing order of deposition.

(b) Similarly the anion which is strogner reducing agent(low value of SRP) is liberated first at the anode.

FARADAY'S LAW OF ELECTROLYSIS:

First Law:

$$w = zq$$

$$w = Z$$
 it $Z = Electrochemical equivalent of substance$

Second Law:

W
$$\alpha$$
 E $\frac{W}{E}$ = constant $\frac{W_1}{E_1} = \frac{W_2}{E_2} = \dots$

$$\frac{W}{E} = \frac{i \times t \times current \ efficiency \, factor}{96500} \ .$$

Current efficiency = $\frac{\text{actual mass deposited/produced}}{\text{Theoritical mass deposited/produced}} \times 100$

CONDITION FOR SIMULTANEOUS DEPOSITION OF Cu & Fe AT CATHODE

$$\mathsf{E^o_{Cu^{2^+}/Cu}} - \frac{0.0591}{2} log \ \frac{1}{Cu^{2^+}} = \mathsf{E^o_{Fe^{2^+}/Fe}} - \ \frac{0.0591}{2} \ log \ \frac{1}{Fe^{2^+}}$$

Condition for the simultaneous deposition of Cu & Fe on cathode.

CONDUCTANCE:

$$\text{Conductance} = \frac{1}{\text{Resistance}}$$

Specific conductance or conductivity:

(Reciprocal of specific resistance)
$$K = \frac{1}{\rho}$$

K = specific conductance

Equivalent conductance :

$$\lambda_{E} = \frac{K \times 1000}{Normality}$$

unit: -ohm-1 cm2 eq-1

Molar conductance :

æ

$$\lambda_m = \frac{K \times 1000}{Molarity}$$

unit: -ohm-1 cm2 mole-1

specific conductance = conductance $\times \frac{\ell}{a}$

KOHLRAUSCH'S LAW:

Variation of $\lambda_{\rm eq}$ / $\lambda_{\rm M}$ of a solution with concentration :

(i) Strong electrolyte

$$\lambda_{M}^{c} = \lambda_{M}^{\infty} - b \sqrt{c}$$

(ii) Weak electrolytes : $\lambda_{\infty} = n_{+} \lambda^{\infty}_{+} + n_{-} \lambda^{\infty}_{-}$

where $\boldsymbol{\lambda}$ is the molar conductivity

 n_{\perp} = No of cations obtained after dissociation per formula unit

 n_{\perp} = No of anions obtained after dissociation per formula unit

APPLICATION OF KOHLRAUSCH LAW:

1. Calculation of λ_{M}^{0} of weak electrolytes :

$$\lambda_{M(CH3COOHI)}^{0} = \lambda_{M(CH3COONa)}^{0} + \lambda_{M(HCI)}^{0} - \lambda_{M(NaCI)}^{0}$$

2. To calculate degree of diossociation of a week electrolyte

$$\alpha = \frac{\lambda_m^c}{\lambda_m^0} \qquad ; \qquad \qquad K_{eq} = \frac{c\alpha^2}{(1-\alpha)}$$

3. Solubility (S) of sparingly soluble salt & their $K_{\rm sp}$

$$\begin{array}{rcl} \lambda_{M}{}^{c} &= \lambda_{M}{}^{\infty} &= & \kappa \times \frac{1000}{\text{so lubility}} \\ K_{sp} &= S^{2}. \end{array}$$

Transport Number:

$$t_c = \left[\frac{\mu_c}{\mu_c + \mu_a}\right], \qquad \qquad t_a \ = \left[\frac{\mu_a}{\mu_a + \mu_c}\right].$$

Where t_c = Transport Number of cation & t_a = Transport Number of anion